

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO DE CIÊNCIAS AGRÁRIAS

Coordenadoria do Curso de Graduação em Ciência e Tecnologia de Alimentos

Rod.Admar Gonzaga, 1346 - Itacorubi - CEP 88034.001 -Florianópolis SC **Tel: 48 3721-6290**

E-mail: cta.cca@contato.ufsc.br - Página do Curso: http://www.cta.ufsc.br

PLANO DE ENSINO SEMESTRE - 2025.2

I. IDENTIFICAÇÃO DA DISCIPLINA:					
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA <u>SEMANAIS</u>		TOTAL DE HORAS- AULA SEMESTRAIS
			TEÓRICAS	PRÁTICAS	AULA SEMESTRAIS
OMC5222	Química Orgânica Teórica A	2503/3503	4	0	72

II. PROFESSOR(ES) MINISTRANTE(S)/E-MAIL	III. DIAS E HORÁRIOS DAS AULAS
Fábio Zazyki Galetto (galetto.f.z@ufsc.br)	Terças-feiras 7:30 – 9:10 h; Sextas-feiras 10:10 - 11:50 h

IV. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
QMC5150	Química Geral e Inorgânica	

V CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Curso de Graduação em Ciência e Tecnologia de Alimentos

VI. EMENTA

Fundamentos: estrutura, ligações, isomeria de compostos orgânicos, estereoquímica. Classificação de reagentes e reações. Métodos de obtenção, propriedades químicas e físicas de alcanos, alcenos, alcadienos, alcinos e cicloalcanos. Efeitos eletrônicos. Ressonância e aromaticidade. Benzeno e compostos aromáticos relacionados.

VII. OBJETIVOS

GERAL:

Apresentar e discutir as principais características estruturais de compostos orgânicos, bem como conhecer e entender como acontecem as principais reações químicas dos hidrocarbonetos.

ESPECÍFICOS

- Utilizar o conceito de hibridização e aplicá-lo para prever a geometria molecular de compostos orgânicos.
- Realizar a análise conformacional de alcanos e cicloalcanos.
- Analisar a ocorrência dos diferentes tipos de isomeria.
- Conhecer as principais reações de alcanos, alcenos, alcadienos e alcinos, bem como os mecanismos envolvidos.
- Introduzir o conceito de aromaticidade, discutindo as consequências físicas e químicas desse fenômeno.
- Introduzir as reações de substituição eletrofilica em compostos benzenóides.

VIII. CONTEÚDO PROGRAMÁTICO

- <u>1. ESTRUTURA E LIGAÇÃO</u> Estrutura atômica: orbitais e configuração eletrônica. Ligação química: iônica e covalente. Teoria da Ligação de Valência. Hibridização: Orbitais sp³ e a estrutura do metano; Orbitais sp² e a estrutura do etileno; Orbitais sp e a estrutura do Acetileno. Hibridização do Nitrogênio e Oxigênio. Formas de representação de moléculas. Introdução à Teoria dos Orbitais Moleculares.
- 2. ÁCIDOS E BASES Ligação covalente polar: Eletronegatividade e Momento dipolar. Cargas formais. Ressonância. Definição de Bronsted-Lowry e o valor do pK_a ; definição de Lewis.
- <u>3. ALCANOS E CICLOALCANOS</u> Estrutura, nomenclatura, propriedades físicas. Análise conformacional e isomeria em cicloalcanos. Estabilidade dos anéis.
- <u>4. ESTEREOQUÍMICA</u> Centro de quiralidade e Enantiômeros. Atividade óptica. Diastereoisômeros. Compostos meso. Projeção de Fischer. Configuração R e S. Moléculas com mais de 2 centros estereogênicos.
- <u>5. ALCENOS E DIENOS</u> Estrutura, nomenclatura, propriedades fisicas. Isomeria. Estabilidade. Principais reações. Propriedades espectroscópicas. Conjugação. Implicações na formação de radicais livres.
- <u>6. ALCINOS</u> Estrutura, nomenclatura, propriedades físicas. Reação de adição eletrofilica. Acidez de alcinos: formação do íon acetileto e uso em síntese.
- <u>7. BENZENO E AROMATICIDADE</u> Fontes de hidrocarbonetos aromáticos. Nomenclatura. Estrutura do benzeno. Estabilidade do benzeno. Aromaticidade. Propriedades químicas: Substituição aromática eletrofilica. Reações de substituição de benzenos mono-substituídos.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A disciplina será ministrada através de aulas expositivas utilizando quadro, projetor e modelos moleculares. Será utilizada a plataforma Moodle como ferramenta auxiliar.

X. METODOLOGIA DE AVALIAÇÃO

Serão realizadas 4 avaliações escritas (Provas), todas com mesmo peso.

A Nota Final (NF) será calculada como segue:

$$NF = (P1 + P2 + P3 + P4) / 4$$

CONSIDERAÇÕES IMPORTANTES:

De acordo com a Resolução 17/CUn/97 – Capitulo IV – Seção I – Artigo 72 – A nota mínima de aprovação em cada disciplina é 6,0 (seis vírgula zero).

De acordo com a Resolução 17/CUn/97 – Capítulo IV – Seção I – Artigo 70 – § 40 – Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). De acordo com a Resolução 17/CUn/97 – Capítulo IV – Seção I – Artigo 74. O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá formalizar pedido de avaliação à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 2 (dois) dias úteis.

REVISÃO DA AVALIAÇÃO

Segundo a Resolução 017/CUn/97 em seu Art. 73, é facultado ao aluno requerer ao Chefe do Departamento a revisão da avaliação, mediante justificativa circunstanciada dentro de 02 (dois) dias úteis, após a divulgação do resultado.

XI. NOVA AVALIAÇÃO

EX: Conforme estabelece o $\S2^\circ$ do Art.70, da Resolução n° 017/CUn/97, o aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 (três vírgula zero) e 5,5 (cinco vírgula cinco) terá direito a uma nova avaliação teórica (cumulativa) no final do semestre. A nota final será calculada através da média aritmética entre a média das notas das avaliações parciais e a nota obtida na **nova avaliação**.

XII. CRONOGRAMA				
Datas	Conteúdo			
12/08 a 02/09	1 a 3			
05/09	PROVA 1			
09/09 a 07/10	4-5			
10/10	PROVA 2			
14/10 a 04/11	5			
07/11	PROVA 3			
11/11 a 28/11	6 a 7			
02/12	PROVA 4			
05/12	Provas Remarcadas (2ª Chamada)			
09/12	Nova Avaliação (REC)			
12/12	Divulgação das Notas Finais			

XIII. BIBLIOGRAFIA BÁSICA

- 1. McMURRY, John. **Química Orgânica**. vol. 1 e 2, 6º Ed. São Paulo: Pioneira Thomson Learning, 2005 ou versão combo digital: McMurry, J. (2016). *Química Orgânica Combo: Tradução da 9ª edição norte-americana* (3rd ed.). Grupo A. https://cengagebrasil.vitalsource.com/books/9788522125876.
- 2. BRUICE, Paula Y. Química Orgânica. Vol. 1 e 2, 4º Ed. São Paulo: Pearson Prentice Hall, 2006.
- 3. CLAYDEN, Jonathan. Organic chemistry, Oxford: Oxford University Press, 2001.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- 1. CAREY, Francis A. Química Orgânica. 3rd ed. -. New York: McGraw Hill, c1996.
- 2. SYKES, Peter; CHEM, C. A primer to mechanism in organic chemistry. Harlow: Longman, 1995.
- 3. COSTA, Paulo. Substâncias carboniladas e derivados. Porto Alegre: Bookman, 2003.
- 4. MORRISON, Robert Thornton; BOYD, Robert Neilson. **Organic chemistry**. 6th ed. Englewood Cliffs: Prentice-Hall, 1992.
- 5. SOLOMONS, T. W. Graham; FRYHLE, Craig B. Química Orgânica. 10. ed. Rio de Janeiro: LTC, c2012.

Assinatura do Professor

ICP-Edu W	Documento assinado digitalmente Valdir Rosa Correia Data: 18/06/2025 16:17:38-0300 CPF: ***.244.539-** Verifique as assinaturas em https://v.ufsc.br

Assinatura do Chefe do Departamento

Aprovado no Colegiado	do Depto/Centro
Em:/_	/